Công thức diện tích Diện tích

Đa giác

Đối với một đa giác không tự cắt (đa giác đơn), tọa độ Descartes ( x i , y i ) {\displaystyle (x_{i},y_{i})} (i = 0, 1,..., n -1) của n đỉnh đã biết, diện tích được cho bởi công thức của người đóng móng:[21]

A = 1 2 | ∑ i = 0 n − 1 ( x i y i + 1 − x i + 1 y i ) | {\displaystyle A={\frac {1}{2}}|\sum _{i=0}^{n-1}(x_{i}y_{i+1}-x_{i+1}y_{i})|}

trong đó khi i = n -1, thì i +1 được biểu thị dưới dạng môđun n và do đó quy về 0.

Hình chữ nhật

Diện tích của hình chữ nhật này là lw.

Công thức diện tích cơ bản nhất là công thức diện tích hình chữ nhật. Cho một hình chữ nhật có chiều dài l và chiều rộng w, công thức của diện tích là:[2][22]

A = lw.

Nghĩa là, diện tích của hình chữ nhật bằng chiều dài nhân với chiều rộng. Trong trường hợp đặc biệt, vì l = w trong trường hợp hình vuông, diện tích của hình vuông có độ dài cạnh s được cho bởi công thức:[1][2][23]

A = s2

Công thức cho diện tích hình chữ nhật trực tiếp dựa trên các tính chất cơ bản của diện tích, và đôi khi được coi là một định nghĩa hoặc tiên đề. Mặt khác, nếu hình học được phát triển trước số học, công thức này có thể được sử dụng để định nghĩa phép nhân các số thực.

Phương pháp tách hình, hình bình hành và hình tam giác

Hầu hết các công thức đơn giản khác cho diện tích đều tuân theo phương pháp tách hình. Điều này bao gồm việc cắt một hình thành từng hình nhỏ, và việc tính diện tích hình đó sẽ là việc dùng phép cộng các diện tích các hình con.

Sơ đồ cho thấy cách một hình bình hành có thể được sắp xếp lại thành hình chữ nhật.

Ví dụ, bất kỳ hình bình hành nào cũng có thể được chia nhỏ thành hình thangtam giác vuông, như thể hiện trong hình bên trái. Nếu tam giác được di chuyển sang phía bên kia của hình thang, thì hình thu được là một hình chữ nhật. Theo đó diện tích của hình bình hành bằng diện tích của hình chữ nhật đó:[2]

A = bh  (hình bình hành).

Một hình bình hành chia thành hai tam giác bằng nhau.

Tuy nhiên, cùng một hình bình hành cũng có thể được cắt theo một đường chéo thành hai tam giác tương đẳng, như trong hình bên phải. Như vậy diện tích của mỗi tam giác bằng một nửa diện tích của hình bình hành:[2]

A = 1 2 b h {\displaystyle A={\frac {1}{2}}bh}  (Tam giác).

Các phép chứng minh tương tự có thể được sử dụng để tìm công thức diện tích cho hình thang [24] cũng như các đa giác phức tạp hơn.[25]

Diện tích các hình cong

Hình tròn

Một hình tròn có thể được chia thành các hình quạt mà sắp xếp lại để tạo thành một xấp xỉ hình bình hành.

Công thức tính diện tích hình tròn (được gọi đúng hơn là diện tích được bao bởi hình tròn hay diện tích đĩa) dựa trên một phương pháp tương tự. Cho một vòng tròn bán kính r nó có thể phân vùng các vòng tròn vào các lĩnh vực, như thể hiện trong hình bên phải. Mỗi cung có dạng hình tam giác gần đúng và các cung có thể được sắp xếp lại để tạo thành một hình bình hành gần đúng. Chiều cao của hình bình hành này là r, và chiều rộng bằng nửa chu vi của hình tròn, hay πr. Như vậy, tổng diện tích của hình tròn là πr2:[2]

A = πr2  (hình tròn).

Mặc dù việc phân tách hình tròn được sử dụng trong công thức này chỉ là gần đúng, nhưng sai số ngày càng nhỏ hơn khi vòng tròn được phân chia thành ngày càng nhiều cung. Giới hạn diện tích của các hình bình hành gần đúng là πr2, là diện tích của hình tròn.[26]

Lập luận này thực sự là một ứng dụng đơn giản của các ý tưởng của phép tính vi tích phân. Trong thời cổ đại, phương pháp cạn kiệt được sử dụng một cách tương tự để tìm diện tích hình tròn, và phương pháp này ngày nay được công nhận là tiền thân của phép tính tích phân. Sử dụng các phương pháp hiện đại, diện tích hình tròn có thể được tính bằng cách sử dụng một tích phân xác định:

A = 2 ∫ − r r r 2 − x 2 d x = π r 2 . {\displaystyle A\;=\;2\int _{-r}^{r}{\sqrt {r^{2}-x^{2}}}\,dx\;=\;\pi r^{2}.}

Hình elip

Công thức cho diện tích được bao bởi một hình elip có liên quan đến công thức của một hình tròn; đối với một hình elip với các bán trục chính và bán trục phụ x và y, với công thức là:[2]

A = π x y . {\displaystyle A=\pi xy.}

Diện tích bề mặt

Archimedes đã chỉ ra rằng diện tích bề mặt của một hình cầu bằng bốn lần diện tích của một đĩa phẳng có cùng bán kính, và thể tích của hình cầu bằng 2/3 thể tích của một hình trụ có cùng chiều cao và bán kính.

Hầu hết các công thức cơ bản cho diện tích bề mặt có thể thu được bằng cách cắt các bề mặt và làm phẳng chúng. Ví dụ, nếu bề mặt bên của một hình trụ (hoặc bất kỳ hình lăng trụ nào) được cắt theo chiều dọc, bề mặt đó có thể được làm phẳng thành hình chữ nhật. Tương tự, nếu một vết cắt được thực hiện dọc theo mặt bên của hình nón, bề mặt bên có thể được làm phẳng thành một phần của hình tròn và diện tích kết quả có thể được tính ra.

Công thức cho diện tích bề mặt của một hình cầu khó tìm hơn: bởi vì một hình cầu có độ cong Gauss khác 0, nó không thể bị cán dẹt ra. Công thức về diện tích bề mặt của một hình cầu lần đầu tiên được Archimedes thu được trong tác phẩm Về hình cầu và hình trụ. Công thức là:[6]

  • A = 4πr2  (hình cầu), với r là bán kính của hình cầu. Cũng giống như công thức về diện tích hình tròn, bất kỳ suy luận nào của công thức này đều sử dụng các phương pháp tương tự như tích phân.

Công thức chung

Diện tích của các hình 2 chiều

Diện tích tam giác A = b ⋅ h 2 {\displaystyle A={\tfrac {b\cdot h}{2}}}
  • Hình tam giác : 1 2 B h {\displaystyle {\tfrac {1}{2}}Bh} (trong đó B là cạnh bất kỳ và h là khoảng cách từ đường thẳng mà B nằm đến đỉnh còn lại của tam giác). Có thể sử dụng công thức này nếu biết chiều cao h . Nếu biết độ dài của ba cạnh thì có thể sử dụng công thức Heron : s ( s − a ) ( s − b ) ( s − c ) {\displaystyle {\sqrt {s(s-a)(s-b)(s-c)}}} trong đó a, b, c là các cạnh của tam giác và s = 1 2 ( a + b + c ) {\displaystyle s={\tfrac {1}{2}}(a+b+c)} là một nửa chu vi của nó. [27] Nếu cho một góc và hai cạnh bên của nó, diện tích là 1 2 a b sin ⁡ ( C ) {\displaystyle {\tfrac {1}{2}}ab\sin(C)} trong đó C là góc đã cho và a và b là các cạnh của nó. [27] Nếu tam giác được vẽ đồ thị trên một mặt phẳng tọa độ, một ma trận có thể được sử dụng và được đơn giản hóa thành giá trị tuyệt đối của 1 2 ( x 1 y 2 + x 2 y 3 + x 3 y 1 − x 2 y 1 − x 3 y 2 − x 1 y 3 ) {\displaystyle {\tfrac {1}{2}}(x_{1}y_{2}+x_{2}y_{3}+x_{3}y_{1}-x_{2}y_{1}-x_{3}y_{2}-x_{1}y_{3})} . Công thức này còn được gọi là công thức dây giày và là một cách dễ dàng để giải diện tích của một tam giác tọa độ bằng cách thay thế 3 điểm (x 1, y 1 ), (x 2, y 2 ) và (x 3, y 3 ) . Công thức dây giày cũng có thể được sử dụng để tìm diện tích của các đa giác khác khi các đỉnh của chúng đã biết. Một cách tiếp cận khác cho tam giác tọa độ là sử dụng phép tính để tìm diện tích.
  • Một đa giác đơn được xây dựng trên một lưới các điểm có khoảng cách bằng nhau (tức là các điểm có tọa độ nguyên ) sao cho tất cả các đỉnh của đa giác là các điểm lưới: i + b 2 − 1 {\displaystyle i+{\frac {b}{2}}-1} , với i là số điểm lưới bên trong đa giác và b là số điểm biên. Kết quả này được gọi là định lý Pick . [28]

Diện tích trong giải tích

Tích phân có thể được coi là đo diện tích dưới một đường cong, được xác định bởi f ( x ), giữa hai điểm (ở đây là a và b ).Diện tích giữa hai đồ thị có thể được đánh giá bằng cách tính hiệu giữa tích phân của hai hàm
  • Diện tích giữa đường cong có giá trị dương và trục hoành, được đo giữa hai giá trị a và b (b được định nghĩa là lớn hơn trong hai giá trị) trên trục hoành, được cho bởi tích phân từ a đến b của hàm đại diện cho đường cong: [29]
    • A = ∫ a b f ( x ) d x . {\displaystyle A=\int _{a}^{b}f(x)\,dx.}
  • Diện tích giữa đồ thị của hai hàm số bằng tích phân của một hàm số, f ( x ), trừ đi tích phân của hàm số kia, g ( x ):
    • A = ∫ a b ( f ( x ) − g ( x ) ) d x , {\displaystyle A=\int _{a}^{b}(f(x)-g(x))\,dx,}
  • Diện tích bị giới hạn bởi một hàm r = r (θ) được biểu thị bằng tọa độ cực là: [30]
    • A = 1 2 ∫ r 2 d θ . {\displaystyle A={1 \over 2}\int r^{2}\,d\theta .}
  • Khu vực được bao quanh bởi một đường cong tham số u → ( t ) = ( x ( t ) , y ( t ) ) {\displaystyle {\vec {u}}(t)=(x(t),y(t))} với các điểm cuối u → ( t 0 ) = u → ( t 1 ) {\displaystyle {\vec {u}}(t_{0})={\vec {u}}(t_{1})} được cho bởi tích phân đường :
    • ∮ t 0 t 1 x y ˙ d t = − ∮ t 0 t 1 y x ˙ d t = 1 2 ∮ t 0 t 1 ( x y ˙ − y x ˙ ) d t {\displaystyle \oint _{t_{0}}^{t_{1}}x{\dot {y}}\,dt=-\oint _{t_{0}}^{t_{1}}y{\dot {x}}\,dt={1 \over 2}\oint _{t_{0}}^{t_{1}}(x{\dot {y}}-y{\dot {x}})\,dt}
  • (xem định lý Green ) hoặc thành phần z của
    • 1 2 ∮ t 0 t 1 u → × u → ˙ d t . {\displaystyle {1 \over 2}\oint _{t_{0}}^{t_{1}}{\vec {u}}\times {\dot {\vec {u}}}\,dt.}